Étude du nombre de côtés

Pour tout entier naturel n avec $n \ge 1$, on note C_n le nombre de segments qui constituent le flocon à l'étape n.

1. (a)	n	1	2	3	4
	C_n	3	12	48	192

(b) Pour tout $n \ge 1$, comme chaque segment de l'étape n en produit 4 à l'étape suivante, $C_{n+1} = 4C_n$. La suite C est géométrique de raison 4. Ainsi pour tout $n \ge 1$, $C_n = 3 \times 4^{n-1}$.

2. Étude du périmètre

Pour tout entier naturel n avec $n \ge 1$, on note u_n la longueur du segment à l'étape n.

- (a) Pour tout $n \ge 1$, comme chaque nouveau segment de l'étape n+1 a une longueur égale au tiers d'un segment de l'étape n, $u_{n+1} = \frac{1}{3}u_n$. u est géométrique de raison $\frac{1}{3}$
- (b) Pour tout entier naturel $n \ge 1$, $u_n = \frac{1}{3^{n-1}}$.
- (c) Pour tout $n \ge 1$, $p_n = C_n \times u_n = 3 \times \left(\frac{4}{3}\right)^{n-1}$.

3. Étude de l'aire

Pour tout entier naturel n avec $n \ge 1$, on note a_n l'aire du flocon à l'étape n.

(a) L'aire d'un triangle est égale à $\frac{\mathbf{Base} \times \mathbf{Hauteur}}{2}$, d'où :

Le triangle est équilatéral, donc ses trois angles valent $\frac{\pi}{3}$.

On en déduit que la hauteur h vaut $h = 1 \times \sin \frac{\pi}{3} = 1 \times \frac{\sqrt{3}}{2} = \frac{\sqrt{3}}{2}$.

Alors:
$$a_1 = \frac{1}{2} \times 1 \times \sqrt{1^2 - \left(\frac{1}{2}\right)^2} = \frac{\sqrt{3}}{4}$$
. $a_1 = \frac{\sqrt{3}}{4}$

(b) De l'étape n à l'étape n+1, l'aire est augmentée de celle des C_n triangles équilatéraux de côté u_{n+1} . Un triangle équilatéral de côté ℓ a une aire de $\ell^2 \frac{\sqrt{3}}{4}$.

On en déduit que, pour tout entier naturel $n \ge 1$ $a_{n+1} = a_n + C_n \times u_{n+1}^2 \frac{\sqrt{3}}{4}$.

Par conséquent :

$$a_{n+1} - a_n = C_n \times u_{n+1}^2 \frac{\sqrt{3}}{4} = 3 \times 4^{n-1} \times \left[\left(\frac{1}{3} \right)^n \right]^2 \times \frac{\sqrt{3}}{4} = 3 \times 4^{n-1} \frac{1}{9^n} \times \frac{\sqrt{3}}{4} = 3 \times \frac{4^{n-1}}{9 \times 9^{n-1}} \times \sqrt{\frac{3}{4}} = \boxed{\frac{\sqrt{3}}{12} \left(\frac{4}{9} \right)^{n-1}}$$

- (c) i. A. $(a_n a_{n-1}) + (a_{n-1} a_{n-2}) + \dots + (a_2 a_1) = \boxed{a_n a_1}$ (en simplifiant (SOMME TÉLESCOPIQUE!!!))
 - B. Autre façon:

$$(a_n - a_{n-1}) + (a_{n-1} - a_{n-2}) + \dots + (a_2 - a_1)$$

$$= \frac{\sqrt{3}}{12} \left[\left(\frac{4}{9} \right)^{n-2} + \left(\frac{4}{9} \right)^{n-3} + \dots + 1 \right] = \frac{\sqrt{3}}{12} \left[1 + \frac{4}{9} + \dots + \left(\frac{4}{9} \right)^{n-2} \right].$$

On remarque la somme de termes consécutifs d'une suite géométrique :

On obtient :
$$\frac{\sqrt{3}}{12} \frac{1 - \left(\frac{4}{9}\right)^{n-1}}{1 - \frac{4}{9}} = \dots = \frac{3\sqrt{3}}{20} \left(1 - \left(\frac{4}{9}\right)^{n-1}\right).$$

On en déduit :
$$a_n = a_1 + \frac{3\sqrt{3}}{20} \left(1 - \left(\frac{4}{9} \right)^{n-1} \right) = \boxed{\frac{\sqrt{3}}{4} + \frac{3\sqrt{3}}{20} \left(1 - \left(\frac{4}{9} \right)^{n-1} \right)}$$

1

- (d) On trouve : $\boxed{a_{50}} \approx 0,693$.
- 4. (a) Le périmètre p_n devient de plus en plus grand quand n augmente et tend vers $+\infty$, car $\frac{4}{3} > 1$ (justification dans le prochain chapitre).
 - (b) $-1 < \frac{4}{9} < 1$, donc $\left(\frac{4}{9}\right)^{n-1}$ tend vers 0 quand n tend vers $+\infty$ donc l'aire a_n tend vers $\frac{\sqrt{3}}{4} + \frac{3\sqrt{3}}{20} = \frac{2}{5}\sqrt{3}$. (justification dans le prochain chapitre)

Remarque : le flocon de Koch qui est la figure « limite » obtenue quand n tend vers $+\infty$ a une aire finie, mais un périmètre infini!

Remarque: Cliquer sur le lien ci-dessous

Construction animée du flocon de Koch : A voir absolument!!!